12,929 research outputs found

    Cascade events at IceCube + DeepCore as a definitive constraint on the dark matter interpretation of the PAMELA and Fermi anomalies

    Get PDF
    Dark matter decaying or annihilating into μ^+μ^- or τ^+τ^- has been proposed as an explanation for the e^± anomalies reported by PAMELA and Fermi. Recent analyses show that IceCube, supplemented by DeepCore, will be able to significantly constrain the parameter space of decays to μ^+μ^-, and rule out decays to τ^+τ^- and annihilations to μ^+μ^- in less than five years of running. These analyses rely on measuring tracklike events in IceCube + DeepCore from down-going ν_μ. In this paper we show that by instead measuring cascade events, which are induced by all neutrino flavors, IceCube + DeepCore can rule out decays to μ^+μ^- in only three years of running, and rule out decays to τ^+τ^- and annihilation to μ^+μ^- in only one year of running. These constraints are highly robust to the choice of dark matter halo profile and independent of dark matter-nucleon crosssection

    Neutron Stars as Type-I Superconductors

    Full text link
    In a recent paper by Link, it was pointed out that the standard picture of the neutron star core composed of a mixture of a neutron superfluid and a proton type-II superconductor is inconsistent with observations of a long period precession in isolated pulsars. In the following we will show that an appropriate treatment of the interacting two-component superfluid (made of neutron and proton Cooper pairs), when the structure of proton vortices is strongly modified, may dramatically change the standard picture, resulting in a type-I superconductor. In this case the magnetic field is expelled from the superconducting regions of the neutron star leading to the formation of the intermediate state when alternating domains of superconducting matter and normal matter coexist.Comment: 4 page

    Domain Wall Bubbles in High Energy Heavy Ion Collisions

    Get PDF
    It has been recently shown that meta-stable domain walls exist in high-density QCD (μ0\mu\neq 0) as well as in QCD with large number of colors (NcN_c\to\infty), with the lifetime being exponentially long in both cases. Such metastable domain walls may exist in our world as well, especially in hot hadronic matter with temperature close to critical. In this paper we discuss what happens if a bubble made of such wall is created in heavy ion collisions, in the mixed phase between QGP and hadronic matter. We show it will further be expanded to larger volume 20fm3\sim 20 fm^3 by the pion pressure, before it disappears, either by puncture or contraction. Both scenarios leave distinctive experimental signatures of such events, negatively affecting the interference correlations between the outgoing pions.Comment: 6 pages, 1 fi

    Quark mass uncertainties revive KSVZ axion dark matter

    Full text link
    The Kaplan-Manohar ambiguity in light quark masses allows for a larger uncertainty in the ratio of up to down quark masses than naive estimates from the chiral Lagrangian would indicate. We show that it allows for a relaxation of experimental bounds on the QCD axion, specifically KSVZ axions in the 23μ2-3 \mueV mass range composing 100% of the galactic dark matter halo can evade the experimental limits placed by the ADMX collaboration.Comment: 9 pages, 5 figure

    Coupling between phonons and intrinsic Josephson oscillations in cuprate superconductors

    Full text link
    The recently reported subgap structures observed in the current-voltage characteristic of intrinsic Josephson junctions in the high-T_c superconductors Tl_2Ba_2Ca_2Cu_3O_{10+\delta} and Bi_2Sr_2CaCu_2O_{8+\delta} are explained by the coupling between c-axis phonons and Josephson oscillations. A model is developed where c-axis lattice vibrations between adjacent superconducting multilayers are excited by the Josephson oscillations in a resistive junction. The voltages of the lowest structures correspond well to the frequencies of longitudinal c-axis phonons with large oscillator strength in the two materials, providing a new measurement technique for this quantity.Comment: 4 pages, 3 figures, revtex, aps, epsf, psfig. submitted to Physical Review Letters, second version improved in detai

    Comparing the Accuracy of Egg Candling and Egg Flotation to Estimate the Hatching Date of Northern Bobwhite Clutches

    Get PDF
    Floating and candling avian eggs to assess hatch dates has been used successfully to estimate hatch dates for wild bird clutches for decades. However, there is a dearth of information assessing the accuracy of these techniques to estimate northern bobwhite (Colinus virginianus) hatch dates. We captured and fitted a hen bobwhites with very high frequency transmitters during January and February of 2011–2012. We monitored each bird twice weekly until nesting was initiated. We searched for the nest while the hen was away from the nest (i.e., feeding) to reduce potential abandonment. We used egg floatation and egg candling methods to attempt to estimate wild northern bobwhite clutches during the 2011–2012 nesting seasons. We used a mini MagLite© (97 lumens; Mag Instrument, Inc., Ontario, CA, USA) with the glass lens removed so eggs would sit near the bulb to increase the illumination. We used a dark green 68-cm x 137-cm towel to cover the observer in the field to reduce the naturally occurring light, which might have reduced the visibility of the chick embryo. We based age of the eggs (no. of days since the start of incubation) on the embryo growth stage at the time of nest discovery. We conducted egg flotation at the same time as candling. We used a 100-mL glass beaker with 100-mL of ambient temperature tap water to completely submerge the egg to estimate hatch date. We based the flotation estimation age on the angle at which the egg floated in the water. We also conducted a controlled laboratory experiment using pen-raised quail eggs collected from the breeding colony at the Quail-Tech Alliance breeding facility in Lubbock, Texas. We placed 110 eggs in a commercial incubator that was maintained at 37° C with 55% humidity for the duration of the study. We used 3 novice observers to determine the impact of observer bias on the techniques of estimating hatch date. We placed random groups of eggs (i.e., 5–15 eggs at a time until 110 eggs were obtained) into the incubator at a staggered rate to increase variation in the study. We used the same field techniques for hatch date estimation in the controlled study. We first floated eggs during both controlled and field observations to reduce any potential bias that candling might have on the hatch date estimation (i.e., lack of embryo growth). During the controlled study observers examined the eggs individually. Using the average estimated hatch date (Julian date) as a predictor, we used linear regression to determine the accuracy of the candling and floating methods. We also used a linear regression to determine the accuracy of each estimation technique and observers. When candle and egg floating occurred in a field setting, both methods were found to overestimate the actual hatch date of the clutches discovered (n = 47; R2 = 0.993, P \u3c 0.001; estimated hatch days when using candle: x̄ = 1.21 ± 0.92 days, floating: x̄ = 0.89 ± 0.97 days). However, the mean difference between the candling and flotation was -0.38 days (SE = 1.07 days). Regression analysis suggests that candling and egg flotation are fairly accurate predictors of the actual hatch date for newly discovered bobwhite nests (candling: β = 0.43, t = 3.75, P = 0.001; floating: β = 0.53, t = 4.79, P \u3c 0.001). Use of the candling method appears to be correct 43% of the time whereas egg flotation accurately predicted the estimated hatch date 53% of the time. Under controlled conditions, all 3 observers were new to both techniques of hatch date estimation and were all taught by the same instructor for each method. During the controlled test, we found that observers were highly variable. Two observers could predict the estimated hatch date by using the candling and egg flotation methods to a close estimation of the actual hatch date (floating [observer 1: β = 0.23, t = 2.80, P = 0.006 and observer 2: β = 0.47, t = 5.52, P \u3c 0.001]; candling [observer 1: β = 0.30, t = 4.00, P = 0.006, observer 2: β = 0.219, P \u3c 0.01]). Although observer 3 was unable to predict the estimated hatch date for both estimation methods (floating: β = –0.001, t = –0.013, P = 0.684; candling: β = 0.043, t = 0.40, P = 0.990). We also examined any potential abandonment or hatchability issues that might have risen while using candling or floating to estimate hatch dates for wild clutches. We found that 0.06% (5 of 80 nests) of hens abandoned their clutches during this study. Of the 5 nests that were abandoned zero were abandoned because of measurements obtained during the initial investigation of the nest site. All abandonments were due to either weather (i.e., summer hail), predators, or livestock. Viability and hatchability were unaffected for the remaining clutches that were measured during the field study. We found that candling and egg flotation are both viable methods for estimating hatch dates of bobwhite clutches during an initial measurement when a nest is discovered. When an entire clutch is measured accuracy can be within 1 day of the actual estimated hatch date (based on a 24-day incubation period). However, observers or researchers who will estimate hatch dates for clutches should be properly trained and allowed time to acclimate to the measuring techniques to potentially increase their accuracy at estimating hatch dates for northern bobwhite clutches

    The networked seceder model: Group formation in social and economic systems

    Full text link
    The seceder model illustrates how the desire to be different than the average can lead to formation of groups in a population. We turn the original, agent based, seceder model into a model of network evolution. We find that the structural characteristics our model closely matches empirical social networks. Statistics for the dynamics of group formation are also given. Extensions of the model to networks of companies are also discussed

    Inverse scattering approach to multiwavelength Fabry-Pérot laser design

    Get PDF
    A class of multiwavelength Fabry-Pérot lasers is introduced where the spectrum is tailored through a patterning of the cavity effective index. The cavity geometry is obtained using an inverse scattering approach and can be designed such that the spacing of discrete Fabry-Pérot lasing modes is limited only by the bandwidth of the inverted gain medium. A specific two-color semiconductor laser with a mode spacing in the THz region is designed, and measurements are presented demonstrating the simultaneous oscillation of the two wavelengths. The nonperiodic effective index profile of the particular two-color device considered is shown to be related to a Moiré or superstructure grating

    Particle Dark Matter Candidates

    Full text link
    I give a short overview on some of the favorite particle Cold Dark Matter candidates today, focusing on those having detectable interactions: the axion, the KK-photon in Universal Extra Dimensions, the heavy photon in Little Higgs and the neutralino in Supersymmetry. The neutralino is still the most popular, and today is available in different flavours: SUGRA, nuSUGRA, sub-GUT, Mirage mediation, NMSSM, effective MSSM, scenarios with CP violation. Some of these scenarios are already at the level of present sensitivities for direct DM searches.Comment: 7 pages, 4 figures, 3 references added. Contribution to the proceedings of the TAUP 07 conference, Sep. 11-15, Sendai, Japa
    corecore